SEMITOP® 3 ### **IGBT Module** #### SK 30 GD 128 **Preliminary Data** #### **Features** - · Compact design - · One screw mounting - Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC) - · High short circuit capability - SPT=Soft-Puntch-Through technology - V_{ce(sat)} with positive coefficient ### **Typical Applications** - Switching (not for linear use) - Inverter - Switched mode power supplies - UPS | Absolute | Maximum Ratings | T _s = 25 °C, unless otherwise | T_s = 25 °C, unless otherwise specified | | | | | | |-------------------------------------|---|--|---|--|--|--|--|--| | Symbol | Conditions | Values | Units | | | | | | | IGBT | | | | | | | | | | V_{CES} | | 1200 | V | | | | | | | V_{GES} | | ± 20 | V | | | | | | | Ic | $T_s = 25 (80) ^{\circ}C;$ | 35 (25) | Α | | | | | | | I _{CM} | $t_p < 1 \text{ ms}; T_s = 25 (80) °C;$ | 70 (50) | Α | | | | | | | T_{j} | · | - 40 + 150 | °C | | | | | | | Inverse/Freewheeling CAL diode | | | | | | | | | | I _F | $T_s = 25 (80) ^{\circ}C;$ | 37 (25) | Α | | | | | | | I _{FM} = - I _{CM} | $t_p < 1 \text{ ms}; T_s = 25 (80) °C;$ | 74 (50) | Α | | | | | | | T_{j} | · | - 40 + 150 | °C | | | | | | | T_{stg} | | - 40 + 125 | °C | | | | | | | T _{sol} | Terminals, 10 s | 260 | °C | | | | | | | V _{isol} | AC 50 Hz, r.m.s. 1 min. / 1 s | 2500 / 3000 | V | | | | | | | Characteristics | | $T_s = 25 ^{\circ}C$ | T_s = 25 °C, unless otherwise specified | | | | |----------------------|--|-----------------------|---|-------|-------|--| | Symbol | Conditions | min. | typ. | max. | Units | | | IGBT | | | | | • | | | $V_{CE(sat)}$ | I _C = 25 A, T _i = 25 (125) °C | | 1,9 (2,1) | | V | | | $V_{GE(th)}$ | $V_{CE} = V_{GE}$; $I_C = A$ | 4,5 | 5,5 | 6,5 | V | | | C _{ies} | $V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$ | | 2,5 | | nF | | | $R_{th(j-s)}$ | per IGBT | | | 1 | K/W | | | | per module | | | | K/W | | | | under following conditions: | | | | | | | t _{d(on)} | $V_{CC} = 600 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$ | | 55 | | ns | | | t _r ` | I _C = 30 A, T _j = 125 °C | | 26 | | ns | | | $t_{d(off)}$ | $R_{Gon} = R_{Goff} = 15 \Omega$ | | 284 | | ns | | | t _f | | | 40 | | ns | | | E_{on} + E_{off} | Inductive load | | 4,99 | | mJ | | | Inverse/F | reewheeling CAL diode | <u>.</u> | | | • | | | $V_F = V_{EC}$ | I _F = 25 A; T _i = 25 (125) °C | | 2 (1,8) | | V | | | V _(TO) | T _j = (125) °C | | (1) | (1,2) | V | | | r _T | T _i = (125) °C | | (32) | (44) | mΩ | | | R _{th(j-s)} | | | | 1,2 | K/W | | | | under following conditions: | | | | | | | I _{RRM} | I _F = 22 A; V _R = 600 V | | 25 | | Α | | | Q_{rr} | $dI_F/dt = -500 A/\mu s$ | | 4,5 | | μC | | | E_{off} | V _{GE} = 0 V; T _j = 125 °C | | 1 | | mJ | | | Mechanie | cal data | <u>.</u> | | | • | | | M1 | mounting torque | | | 2 | Nm | | | W | | | 19 | | g | | | Case | SEMITOP® 3 | | T 12 | | | | | | | | | | | | This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX. This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.