

SEMITOP® 3

IGBT Module

SK 30 GD 128

Preliminary Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- SPT=Soft-Puntch-Through technology
- V_{ce(sat)} with positive coefficient

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise	T_s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
V_{GES}		± 20	V					
Ic	$T_s = 25 (80) ^{\circ}C;$	35 (25)	Α					
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) °C;$	70 (50)	Α					
T_{j}	·	- 40 + 150	°C					
Inverse/Freewheeling CAL diode								
I _F	$T_s = 25 (80) ^{\circ}C;$	37 (25)	Α					
I _{FM} = - I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) °C;$	74 (50)	Α					
T_{j}	·	- 40 + 150	°C					
T_{stg}		- 40 + 125	°C					
T _{sol}	Terminals, 10 s	260	°C					
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V					

Characteristics		$T_s = 25 ^{\circ}C$	T_s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT					•	
$V_{CE(sat)}$	I _C = 25 A, T _i = 25 (125) °C		1,9 (2,1)		V	
$V_{GE(th)}$	$V_{CE} = V_{GE}$; $I_C = A$	4,5	5,5	6,5	V	
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$		2,5		nF	
$R_{th(j-s)}$	per IGBT			1	K/W	
	per module				K/W	
	under following conditions:					
t _{d(on)}	$V_{CC} = 600 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$		55		ns	
t _r `	I _C = 30 A, T _j = 125 °C		26		ns	
$t_{d(off)}$	$R_{Gon} = R_{Goff} = 15 \Omega$		284		ns	
t _f			40		ns	
E_{on} + E_{off}	Inductive load		4,99		mJ	
Inverse/F	reewheeling CAL diode	<u>.</u>			•	
$V_F = V_{EC}$	I _F = 25 A; T _i = 25 (125) °C		2 (1,8)		V	
V _(TO)	T _j = (125) °C		(1)	(1,2)	V	
r _T	T _i = (125) °C		(32)	(44)	mΩ	
R _{th(j-s)}				1,2	K/W	
	under following conditions:					
I _{RRM}	I _F = 22 A; V _R = 600 V		25		Α	
Q_{rr}	$dI_F/dt = -500 A/\mu s$		4,5		μC	
E_{off}	V _{GE} = 0 V; T _j = 125 °C		1		mJ	
Mechanie	cal data	<u>.</u>			•	
M1	mounting torque			2	Nm	
W			19		g	
Case	SEMITOP® 3		T 12			

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.